

A Non-Standard Basketball Pool: Retrospective and Prospective

Rick Cleary, Babson College For MAA MathFest 2025

With influence from...

- Peter Staab, Fitchburg State
- Brett Presnell, U. of Florida
- John Trono, St. Michael's College
- Aaron Archer, Google (NYC)
- Robin Lock, St. Lawrence University
- Cliff Stein, Columbia
- Tim Chartier, Davidson

Retrospective...

 Original idea: Encourage people to play in an NCAA pool that was simpler than the classic "fill out the whole bracket."

Retrospective...

- Original idea: Encourage people to play in an NCAA pool that was simpler than the classic "fill out the whole bracket."
- Make it fun and interesting both as sports fans and mathematicians, statisticians, programmers.

The Portfolio Pool:

- A classic problem in mathematical finance is portfolio optimization ...
- Rather than pick every game prior to the tournament in the standard 'bracket pool', we developed this alternative:

Portfolio pool...

 Pay a \$1 entry fee, invest in \$1 worth of teams.

Portfolio pool...

- Pay \$1 entry fee, invest in \$1 worth of teams.
- Number one seeds cost 25 cents each ... number two seeds cost 21 cents each...

The whole price list

Seed	Price	Seed F	Price
1	.25	8	.06
2	.21	9	.05
3	.18	10	.04
4	.15	11	.03
5	.12	12	.02
6	.10	13-16	.01
7	.08		

A Player's score is total wins by the teams they choose to purchase...

The whole price list

Seed	Price		Seed	Price
1	.25	8	.06	
2	.21	9	.05	
3	.18	10	.04	
4	.15	11	.03	
5	.12	12	.02	
6	.10	13-1	6 .01	
7	.08			

A Player's score is total wins by the teams they choose to purchase... high score wins the whole pot (split in case of ties.)

Like in Finance...

- Want to get a large expected return...
- Have to balance quality of a team with quality of opposition and whether they are direct competitors.
- 'Blue chips' are expensive but don't always yield good result, 'penny stocks' are tempting but hard to pick!

Different than Finance...

- Because there are many entries, a strategy that is high variance as well as high expectation is best. (Hard for a conservative investor to win in this game.)
- In terms of mathematical modeling:
 Maximizing P(first place) is not the
 same as maximizing expected points!

State of the Art, 2001

 With Archer, Lock and Trono we published this paper:

https://www.jstor.org/stable/pdf/25678302.pdf

State of the Art, 2001

With Archer, Lock and Trono we published this paper:

https://www.jstor.org/stable/pdf/25678302.pdf

A few key points:

- -Twelve seeds were historical good investment.
- -Probability modeling key to good performance.
- -Determining optimal entry after the tournament was a classic knapsack algorithm ... greedy algorithm usually wors!

Since 2001...

- Many players got serious about combinatorial optimization and modeling.
- Non-math fans intimidated! Resulted in establishment of alternate prize pools for single entries and multiple entries.
- And of course, many more years of data.

2025 results for this pool...

- Unusual year with the four #1 seeds all making it to the Final Four:
- SINGLE ENTRIES: 32 players, three tied with 18 wins ... not as good as the most conservative strategy of four #1 seeds!
- MULTIPLE ENTRIES: 101 entries, winner had 20 of a possible 23 points.

Perfect Hindsight '25

School	Cost	Wins	Cents/Win	WIN TOTAL	COST TOTAL
Colorado State	0.02	1	2	1	2
McNeese State	0.02	1	2	2	4
Arkansas	0.04	2	2	4	8
Drake	0.03	1	3	5	11
New Mexico	0.04	1	4	6	15
Florida	0.25	6	4.17	12	40
Baylor	0.05	1	5	13	45
Creighton	0.05	1	5	14	50
BYU	0.1	2	5	16	60
Ole Miss	0.1	2	5	18	70
Houston	0.25	5	5	23	95

So now what?

 Evaluating probability models for P(upset | factor) where factor might be:

So now what?

 Evaluating probability models for P(upset | factor) where factor might be:

-Difference in seeding (i.e 7 vs. 10)

Game level modeling...

- Evaluating probability models for P(upset | factor) where factor might be:
- -Difference in seeding (i.e 7 vs. 10)
- -Difference in rankings by popular websites (i.e. UCLA 29th vs Utah St. 39th)
- -Other factors (recent play, conference, etc.)

Pool level modeling

- As number of entries grows, how much 'added variance' might help an entry stand out?
- What total is likely to be needed to win the pool given the optimal outcome?

(Data suggests 6.243 + 0.557 * OPT)

Pool level modeling

- As number of entries grows, how much 'added variance' might help an entry stand out?
- What total is likely to be needed to win the pool given the optimal outcome?
 (Data suggests 6.243 + 0.557 * OPT)

And ...

 Difference in men's and women's tournaments. (Peter Staab has already begun exploring the 'upset history' for both.)

Prospective...

We will be considering:

-Game level: Factors that help predict outcomes of individual games; and

Prospective...

We will be considering:

-Game level: Factors that help predict outcomes of individual games; and...

-Pool level: A 'field guide' to playing in an NCAA tournament pool, depending on the rules of the pool, the number of players, and for different tournaments.

Thanks for listening...

Questions and comments welcome!

 And if you want to play portfolio pool in 2026 write my personal email address:

rickclearystats@gmail.com

(And if you want to start a women's portfolio pool, that would be great!)

References...

-Archer, Cleary, Lock and Trono; Math Horizons Portfolio Pool:

https://www.jstor.org/stable/pdf/25678302.pdf

-Staab and Cleary, basketball score distributions:

https://www.comap.com/membership/memberresources/item/same-score-streaks-in-basketball-andin-other-sports